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A large number of papers are devoted to the study of the stability of rotating flows. 
Significant progress has been made in understanding the particular idealized case, viz., 
the stability of ideal fluid flows with circular streamlines (see, e.g., [1-7]). A study 
of this problem made it possible to establish the existence of two fundamental mechanisms 
of instability in rotating flows, viz, "centrifugal" and "shear." An understanding of 
these instability mechanisms became the basis for modeling a whole series of transition and 
turbulence phenomena [2, 4, 7-12]). At the same time actual flows are frequently only 
approximately circular. Hence the question arises as to the influence of small deviations 
from circular geometry on the flow stability. This problem was studied in [13-16]. In [13- 
14] experimental and theoretical investigations were carried out on the stability of rotating 
fluid inside an elliptic cylinder with a small eccentricity. Instability leading to inflec- 
tions of the axis of rotation was experimentally observed. In order to theoretically study 
this instability, a model based on Galerkin method using two well-chosen base functions was 
suggested. The existence of instability in such a formulation appears, at the first glance, 
surprising since it is known that rigid body rotation has a large stability margin [4]. The 
problem of the stability of linear vortex in a potential flow which is qualitatively close 
to [13-14] was investigated in [15-16]. The vortex core was assumed to be subject to small 
deformation so that the shape of its cross-section is close to an ellipse with a small eccen- 
tricity. Computations using small disturbance theory also showed the existence of instabil- 
ity associated with the inflexion of the axis of rotation. As in [13-14] and also in [15- 
16], theoretical investigation is limited to the study of flow stability with respect to dis- 
turbances of a particular type within the framework of linear theory. The stability of flow 
[13-14] inside an elliptic cylinder is the simplest among a large class of problems associat -~ 
ed with stability of deformed fluid rotation and deserves detailed study. In the present 
paper results are given for the stability of this flow with respect to the general form of 
disturbances. Small disturbance theory is used in terms of the small parameter s. According 
to computations, the flow is always unstable, even to the first-order approximation in ~, 
with respect to three-dimensional disturbances with wavelength 2~/k along the axis of rota- 
tion. The corresponding wave numbers k continuously fill even number of segments of width 
of the order e. At the center of each segment (points ko) the growth rate of disturbances 
is a maximum. The values of ko correspond to conditions for first order singularity of the 
problem. As regards the physical aspect of instability, we note that its mechanism is simi- 
lar to the known "resonant interactions" [17] in the complex case when the plane waves are 
not the solutions to the linear problem. The result obtained can be interpreted as a varia- 
tion of Hasselman's [18] statement on the instability of finite amplitude wave in the pres- 
ence of corresponding "resonance triad~ Here, resonance conditions take the form of 
already mentioned singularity conditions. The deformation of the rotational flow by the 
elliptic walls plays the role of the 'first" wave splitting into two 'resonant" waves. 
The Galerkin method is not used in this paper but the complete linearized equations of motion 
are solved. Hence the results presented here generalize [13-14] for the type of disturbances 
considered in these studies. There is a qualitative agreement here with the conclusions of 
[13-14]. 

i. Let us formulate the problem. Consider an elliptic cylinder whose surface is 
defined by the following equation in cylindrical coordinate system (r, 0, z) 

r = F ( 0 )  ~ ( l  - -  e c ~  2 0 ) ~ / ~ .  ( 1 . 1 )  

If a and b (a >b) are the semi-axes of the ellipse lying in the normal plane of the cylinder, 
then e ~(a 2 -- b2)/(a 2 +b2). The interior of the cylinder is filled by an ideal, incompres- 
sible fluid whose velocity field (U, V, O) is 
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U =  - - e r s i n 2 0 ,  V = r ( l - - e c o s 2 0 ) .  ( 1 . 2 )  

In the corresponding vorticity field the only nonzero quantity is the z-component and it is 
a constant. All parameters are reduced to nondimensional form using the reference length 
R --ab/2/(a 2 +b 2) and reference velocity ~R. The quantity 2~ is defined as the vorticity 
of the basic flow. The velocity field (1.2) is an exact solution of the equations of motion 
and satisfies the condition of impermeability on (i.i). 

Consider infinitely small three-dimensional disturbances to the flow (1.2). Linearized 
equations of motion for the velocity field (1.2) are: 

, OU 'r- ! OU "' 01, 
L u  ~- W u r - ~ -  v - -  =~ V~ . . . . .  ,qT,. ' 

OV , I or  v @  t ( U v _ I _ V u ) =  I o,, (1.3) 
Lv-}--~r tt .~ 7 oO ,-- r uO' 

01' 0 . . - ' c  u , t 0~' I Ow 
L w = - - - K f ,  ~ 7 -r- r ~-ff " - -j~'~ = 0 "  

u, v, u, and p denote disturbance fields of radial, peripheral, axial velocity components, 
and the pressure disturbance; L-~/~t +UB/Br +(i/r)VB/~e. Boundary conditions for (1.3) con- 
sist in equating to zero the normal velocity component on (I.i) 

dF 
f u - -  ~ - V  =- 0 for r -=  t"(0) (1.4) 

and boundedness of solutions at r =0. In view of the invariance of equations and boundary 
conditions relative to displacements in z and t, the solution to the problem is sought in 
the form 

(p, tt, v, w ) :  (Pa, t,a, t'~, w~)ei(~'~-~ ( 1 . 5 )  

Amplitudes Pa, ua, va, and wa are functions only of coordinates r and 0. Substituting (1.5) 
in (1.3) and (1.4) we get the eigenvalue problem in m and corresponding eigenfunctions. 
If there exists at least one disturbance with Im m >0, then the flow is unstable. 

2. The problem of determining the eigenvalues m in the present formulation is very 
difficult and will be solved iteratively with respect to the small parameter e. Computations 
will be made for the zeroth and first-order approximations. 

Assuming the solution to be analytical functions of e, we write them and F(O) for small 
e in a series (~ =0, i, 2,...): 

(Pa, Ua, t'a, tVa, o,, F) == ~.~ 8V(pv, Uv, t'v, Wv, toy,/v). (2.1) 
"r 

Besides, put k =ko +eke. The last expression is used because discrete sum of fixed values 
of ko will correspond to cases of instability. The quantity k, makes it possible to evalu- 
ate k in the neighborhood of ko. Substituting (2.1) in (1.3) and (1.4) and equating terms 
of the same order of e, we get 

0Pv I 0Pv 
Louv - -  2vv + -J-;'r = G,v, Low :~- 2uv + "T " - ~  = G,v, 

( 2 . 2 )  
~ Uv t 0% 

Lowv -~ ikoPv == G~v, ~ + "7" -l- "7" 00 q- ikoWv = Gay, 

where  Lo=- - i m o  + ~ / 3 0 .  When ~ =0 f o r  a l l  l (1 =1 ,  2, 3, 4) t h e  r i g h t - h a n d  s i d e  G10 = 0 .  I n  
e q u a t i o n s  f o r  t h e  f i r s t - o r d e r  a p p r o x i m a t i o n  (~ = 1 ) ,  f u n c t i o n s  Gl~ c o n t a i n  l i n e a r  f u n c t i o n s  
o f  t h e  z e r o t h - o r d e r  a p p r o x i m a t i o n  and the  q u a n t i t y  ~a .  For  e x a m p l e ,  

0u 0 [ o% uo) sin 20 + _~.eos 20. Gl ,  ----- iohuo  + ~r--~F + 

Boundary conditions (1.4) for the zeroth- and first-order approximations (~ =0; i) give 

- -  elf 1 (0) V OUo ( 2 . 3 )  
u o (t ,  0) = 0,  u .  (t ,  0) _ - W -  0 (I,  0) - / ~  (0) ~ T  (t,  0). 

These  c o n d i t i o n s  a r e  " r e m o v e d "  i n  t he  u s u a l  way f rom t h e  a c t u a l  b o u n d a r y  ( 1 . 1 )  t o  t he  n e i g h -  
b o r i n g  c i r c l e  r = 1 .  The s econd  b o u n d a r y  c o n d i t i o n  r e l a t e s  t o  t he  b o u n d e d n e s s  o f  s o l u t i o n s  
f o r  any  a p p r o x i m a t i o n  a t  r =0 .  
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TABLE i 

(t; 1) 

(2; 2) 

(3; 3) 

(i; 2) 

(2; t) 

0 i 

I 

~,579 2,326 
0,038 1 

~, 286 4,125 
0,0t4 

 ,06, 1 
0,007 

3,035 
0,044 

4,9i6 
0,0t9 

6,753 7,551 
O,OiO 0,012 

~ g  

3,731 (i; 3) 
0,042 

5,679 (3; l) 
0,020 

(2; 3) 

2,203 3,075 3,858i 4,60511 
--0,292 --0,i97 --0,154 1 --o,i2911 

2,2031 3,034 I 
// 

3,805 
0,2921 0,24i I 0,210 I 

I ~,55o I 
0,186 

i3; 2) 

2,630 
--0,435 

2,630 
0,435 

4,046 
--0,i65 

I 
i I 2 3 

] 

I 
3,6,4 4, 68 5,266 

--0,33i [ --0,274 [ --0,238 

3,556 4,390 / 5,182 
0,361 0,314 / 0,28i 

4,92,q 5,75i ] 6,5~6 
--0,128 --0,1061 --0,091 

4,046 4,912 I 5.729] 6,51(; 
0,t65 0,147 01134 0,t23 

3. Consider the problem (2.2) and (2.3) for the zeroth order. Its solutions are the 
widely known inertial waves in rigid body rotation of fluid [4, 19] for the particular case 
of the circular cylinder. For harmonics proportional to exp(im0), (2.2) and (2.3) give 

== ira0 Po =J,,~(q~r)e . ( 3 . 1 )  
- -  2 2 .  

Here a is an arbitrary complex constant; Jm is a Bessel function of order m; ~ =koAm/~m, 
. 2 O m Em -- mo, Am~4 -- Om. The quantities ~o and ko are related by the dispersion equation 

' ' 2m]m(Gm) = 0. (3.2) 

It is knoxm [4, 19] that the spectrum of ~o is purely real and m -- 2 <mo <m + 2. 

4. For the first-order problem (2.2) and (2.3) the form of solutions and the quantity 
m~ can be obtained by simple but tedious computations. They reduce to the determination of 
correction to the inertial waves (3.1) caused by differences in geometry from the circular. 
The most complex element in these computations is the solution of nonhomogeneous equations 
(2.2). A similar technique was used for another problem, e.g., in [15]. We observe that 
analytical calculations are significantly simplified by using equations for pressure distur- 
bances obtained from (1.3) in [13]. Without pausing on computations we present the results. 

~,e basic result is formulated in the form of certain conclusions. For the zeroth-order 
approximation in harmonics (3.1) with arbitrary m, m~ is always real. This corresponds to 
stability to the first order. Instability occurs only in the case of singularity when the 
zeroth-order disturbance characterized by frequency mo and wavenumber ko is given by the 
superposition of two modes with different m (m~ and m2) such that m~ -- m2 =• However, 
such disturbances could be either stable or unstable. In the latter case, the range of wave- 
numbers for instability is Ikl[ <kmax. Here, the amplification rate is a maximum at k =ko 
and monotonically decreases away from the limits of the interval, becoming zero when k =ko i 
ekma x. The most dangerous disturbances are those whose modes m, and m2 have identical number 
of zeros of radial velocity component inside the flow (when 0 <r <i). All such disturbances 
are unstable and their amplification rates are almost identical. 

Let us clarify these conclusions. The 'dangerous" disturbances in the zeroth-order 
approximation are: 

po(r, O) = ~J,~1(w)ei( '~+ l)o + ~J~_l(nr)ei(n-1)o. (4 .1)  

Here a and a are arbitrary complex constants; ~ ~n+~; ~ ~nn-~; n is an arbitrary integer. 
A bar over symbols denotes independent variables and not complex conjugates. It is conve- 
nient because of the symmetry of equations. The dispersion relation for harmonics in (4.1) 
are written in the form 

~qJn(~) --  (n + l)~J,+l(q ) = 0, ~qJn0]) - -  (n - -  l ) c J n - l ( ~ )  = O, (4 .2)  

where  g ~Gn+~ ; ~ ~ n - a .  In  v iew of  t he  s i n g u l a r i t y ,  the  i n t e r s e c t i o n  p o i n t s  of  t he  c u r v e s  
(4 .2)  a r e  c o n s i d e r e d  i n  the  k o - ,  ~ o - p l a n e .  The i n t e r s e c t i n g  f a m i l y  of  c u r v e s  (4 .2)  a r e  
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Fig. 1 

concentrated in the band n -- i <too <n +i. The shape of the families is shown in the figure 
for the case n =0. Solid lines indicate (n +i) harmonic, dashed lines denote (n ~ i) har- 
monic. Only the first three from the computed set of curves for each harmonic are shown in 
the figure. The numbers on the curves indicate the number of zeros of the function uo(r) on 
0 <r-l. Each intersection point is denoted by a pair of integers (q: s) corresponding to 
the numbers of the intersecting curves. Points with q =s are called the principal intersec- 
tion points, with q ~ s being the secondary intersection points. When n =0 (see Fig. i), the 
curves are symmetrical about the axis mo and the principal intersection points are located 
on this axis. When n #0, the picture of the branches of dispersion curves located within 
the band ~l <mo ~ n <l are qualitatively similar to that shown in the figure if the ordi- 
nate ~o is replaced by mo ~ n. However, there is no symmetry of the curves about the axis 
mo =n and the principal intersection points do not lie on this axis but they are close to it. 
The summary coordinates of the intersection points are given in Table 1 for n = 0, I, 2, and 
3 where the upper number in each box is ko and the lower number is (too ~ n). 

Computations of mz at singularities (mo, ko) give 

t [" [-~kok I (e--'e)] t (4.3) o~ = - -  ~ kok~ (e + c) + o~,,~ + I ~. ~/~, 

where c -g/f, c -g/~; m~x --hh/ff; f, ~, g, g, h, h are various real functions of ~o, ko, 
and n: 

]--~(--4[k' + (n+ i)"] + 2 (n + t)} dr,+l, 

, 2 (n - i )}  7,,_~, 

- -  :z-hiS, ,  [ - -  oyN,~ + e  (n + l )  N,~+d - -  - ' s  

+ "7 [pa - -  p (n + t)l + " ( "  + ~) IA - -  .29 (cr + ~)1 ~" + o ~ - -  2 (n" - -  t) 
~ ( J -  v )  ' 

- - -  ~" + ~ , ~  - ~ (,, - ~ ) 1 -  " ("---A :n tA + 2 (,~ + ~)1 - -  -~ ( ~  _ ~ ) '  "" + ~" - -  2 (n~ - -  ~) - ~ - ,  

s , , -  ~ s,,+, (,it) ; , ,  (~0 rat, 
0 

g ~ - - ~ [  l+[n+l~lJ''+l'k /~o }J 

r 

"S'~ ~ ,f d,~-I (qt) J,, (,it)t'2dt, 
0 

- E" , / n - -  t V'] 
g---- - ~-II T (--%-0) J Y,,-l. (4.4) 

The notations used are: ~ --an+l, ~ ---On-l, A-An-I, A-An+~ q -=nn+~; ~ -nn-1: P -o +2; ~ - 
-- 2; ~ =4kom(mo -- n)/oa~ 2. Bessel functions Jm and Neumann function Nm are given by Jm = 

Jm(D), Jm -Jm(q); Nm =Nm(q), Nm -Nm(~). 

It is seen from (4.3) that instability (Im mz >0) can occur if 
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TAbLJ~ _ 

(1; l) 
C2; 2) 
(3; 3) 
(~; 2) 
(2; 1) 

0 0 l 

I 
0,531 0,9581 0,531 
0,554 [ 2.325 [ 0,55i 
0,559 I 3170i ] 0,557 
0,012 0,035] 0,005 
0,0i2 0,035[ 0,039 

2 3 0 0 

llee N 

(a; 1) o,oo~ / o ,o~  I 
0,55t I 0,~611 0,o05 / 0,0",.5 I 
0,t02 1 0,12t 1] (2; 3) 
0,052 [ 0,075 II (3; 2) 0,0051 0,025 [ 

0,028 
0,0i5 
0,045 
0,029 

2 3 

0,040 O,048 
O,Ol. l o,o3~ 
0,074 0,094 
0,053 0,050 

~le largest amplification rate ml =mmax is achieved at k~ =0, where a whole range of wave 
numbers are unstable: 

L -- ~Omax  

t "o(c - -  c) 

When Ikxl =kmax t h e r e  i s  no a m p l i f i c a t i o n ,  Im m~ = 0 .  

An important particular case requiring special consideration is when n =0. Geometri- 
cally this case corresponds to the inflexion of the axis of rotation. Such an instability 
can easily be recorded by experiment and it was observed only in [13, 14]. For n =0, 
Eqs. (4.4) are considerably simplified and make it possible to compute ml at secondary inter- 
section points. At principal intersection points ~o #0 and Eqs. (4.4) are not applicable 
since the condition mo =0 was used in one of the intermediate steps. A separate considera- 
tion of the case n =0, ~o =0 gives 

_ _  ~ 2 2 1 2  3, o ~ 1) ~ 16k~(k~  + t ) / k o l  �9 ~ '  = ~ s ( 2 k ~ - i - - , ) [ ( o k o  ~-. - 

T h e  r o o t  w i t h  Im ~1 >0 e x i s t s  when 

16(~+,)*" (4.5) 

When kl =0, this root corresponds to the maximum 

3i 3:0 + 1 
Omax= 8 2 ~ + t "  (4.6) 

The first two columns in Table 2 give values of --imma x and kma x for n =0 at all intersection 
points present in the figure. It is seen that all intersection points indicate instability 
but for the secondary intersection points, the quantities --immax, kma x are one to two orders 
of magnitude less than that of the principal intersection points. A similar situation also 
exists for n =i, 2, and 3. Corresponding values of imma x are given in the remaining columns 
of Table 2. The consideration of negative n does not give anything new since results for 
n = no and n =--no coincide to the same accuracy as the replacement of mo by --mo. Conclusions 
for In] >3, are, apparently, similar. 

Thus, there is a general conclusion on the dominating role of instabilities correspond- 
ing to principal intersection points of dispersion curves. When n =0 these instabilities 
lead to inflection in the axis of rotation and are irrotational (mo =0). Only this type of 
instability was observed so far in experiments [13, 14]. Instabilities with n # 0 lead to 
streamline distortion without a change in the axis of rotation and are rotational (~o~n). 
Their experimental record will be of interest. We emphasize here that the amplification 
rate for disturbances with n =0 and n #0 are practically identical. 

Comparing the analytical results Qbtained with the earlier known results, we observe that the 
particular case n =0 was studied in [13, 14] using the Galerkin method. Only the instability 
corresponding to, in our terminology, principal intersection points, was considered. Exact 
agreement of these results with [13, 14] is observed only for the coordinates of these points 
whereas, amplification rate (4.6) and the width of unstable zones (4.5) are somewhat differ- 
ent. Since the Galerkin method which involves additional assumptions was not used here, 
results of the present paper, in particular, establish the conclusions of [13, 14]. 

The author acknowledges computations carried out by L. Ya. Rybak. 
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